168 research outputs found

    Guiding InfoGAN with Semi-Supervision

    Full text link
    In this paper we propose a new semi-supervised GAN architecture (ss-InfoGAN) for image synthesis that leverages information from few labels (as little as 0.22%, max. 10% of the dataset) to learn semantically meaningful and controllable data representations where latent variables correspond to label categories. The architecture builds on Information Maximizing Generative Adversarial Networks (InfoGAN) and is shown to learn both continuous and categorical codes and achieves higher quality of synthetic samples compared to fully unsupervised settings. Furthermore, we show that using small amounts of labeled data speeds-up training convergence. The architecture maintains the ability to disentangle latent variables for which no labels are available. Finally, we contribute an information-theoretic reasoning on how introducing semi-supervision increases mutual information between synthetic and real data

    STCN: Stochastic Temporal Convolutional Networks

    Full text link
    Convolutional architectures have recently been shown to be competitive on many sequence modelling tasks when compared to the de-facto standard of recurrent neural networks (RNNs), while providing computational and modeling advantages due to inherent parallelism. However, currently there remains a performance gap to more expressive stochastic RNN variants, especially those with several layers of dependent random variables. In this work, we propose stochastic temporal convolutional networks (STCNs), a novel architecture that combines the computational advantages of temporal convolutional networks (TCN) with the representational power and robustness of stochastic latent spaces. In particular, we propose a hierarchy of stochastic latent variables that captures temporal dependencies at different time-scales. The architecture is modular and flexible due to the decoupling of the deterministic and stochastic layers. We show that the proposed architecture achieves state of the art log-likelihoods across several tasks. Finally, the model is capable of predicting high-quality synthetic samples over a long-range temporal horizon in modeling of handwritten text

    Learning Human Motion Models for Long-term Predictions

    Full text link
    We propose a new architecture for the learning of predictive spatio-temporal motion models from data alone. Our approach, dubbed the Dropout Autoencoder LSTM, is capable of synthesizing natural looking motion sequences over long time horizons without catastrophic drift or motion degradation. The model consists of two components, a 3-layer recurrent neural network to model temporal aspects and a novel auto-encoder that is trained to implicitly recover the spatial structure of the human skeleton via randomly removing information about joints during training time. This Dropout Autoencoder (D-AE) is then used to filter each predicted pose of the LSTM, reducing accumulation of error and hence drift over time. Furthermore, we propose new evaluation protocols to assess the quality of synthetic motion sequences even for which no ground truth data exists. The proposed protocols can be used to assess generated sequences of arbitrary length. Finally, we evaluate our proposed method on two of the largest motion-capture datasets available to date and show that our model outperforms the state-of-the-art on a variety of actions, including cyclic and acyclic motion, and that it can produce natural looking sequences over longer time horizons than previous methods
    • …
    corecore